Postoperative chylothorax intervention in a pediatric patient with complex congenital cardiovascular diseases: a case report
Main Article Content
Keywords
Thoracic, Treatment
Abstract
Background: Postoperative chylothorax is a chyle extravasation into the pleural space due to disruption of the thoracic duct within 30 days of surgery. When chest tube output is ≥1,100 ml over any 24 hours, ≥1 L/day for more than five days, or ≥2 L after two days of optimal conservative therapy such as dietary modification and pharmacological therapies, operative therapy or surgical intervention should be considered. Here we present a case of refractory chylothorax after pediatric surgery that did not respond to conservative treatment, and aim to investigate the recommended treatment guideline.
Case Presentation: A 3-year and 9-month-old pediatric patient with dextrocardia mirror-image, double outlet right ventricle (DORV), hypoplastic left ventricle, malposition of the great arteries, and severe pulmonary stenosis underwent a right-sided pulsatile Bi-directional Cavo-pulmonary Shunt (BCPS) and concurrent patent ductus arteriosus ligation. The patient was re-admitted to the hospital following the procedures due to productive cough, dyspnea, and decreased appetite. The chest x-ray revealed a suspicion of BCPS obstruction and left-sided milky pleural effusion. Thoracic duct ligation was performed. The patient’s condition improved.
Conclusion: The management of post-operative chylothorax is based on the chyle production. Patients not responding to conservative treatment may need secondary invasive interventions with undetermined optimal timing. However, the current paradigm suggests that 5-14 days of conservative treatment is adequate to evaluate the need for invasive treatment. High-risk patients may require early invasive treatment, hence the need for risk factor assessment, including superior vena cava high pressure, premature birth, low postoperative albumin, and low body weight and height.
References
2. Reisenauer JS, Puig CA, Reisenauer CJ, Allen MS, Bendel E, Cassivi SD, et al. Treatment of Postsurgical Chylothorax. Ann Thorac Surg. 2018;105(1):254-262. doi:10.1016/j.athoracsur.2017.07.021.
3. Lee SK, Choi KH. Incidence of Postoperative Chylothorax Following Congenital Heart Surgery in Pediatric Patients: A Single-Center Experience. Heart Surg Forum. 2020;23(4):E430-E434. doi:10.1532/hsf.3043.
4. Ahmed MA Sr. Post-Operative Chylothorax in Children Undergoing Congenital Heart Surgery. Cureus. 2021;13(3):e13811. Published 2021 Mar 10. doi:10.7759/cureus.13811
5. Lion RP, Winder MM, Amirnovin R, Fogg K, Bertrandt R, Bhaskar P, et al. Development of consensus recommendations for the management of post-operative chylothorax in paediatric CHD. Cardiol Young. 2022;32(8):1202-1209. doi:10.1017/S1047951122001871.
6. Albåge A. Editorial: postoperative chylothorax-a cause for concern. Acta Neurochir (Wien). 2017;159(10):2023-2024. doi:10.1007/s00701-017-3297-7.
7. Lo Rito M, Al-Radi OO, Saedi A, Kotani Y, Ben Sivarajan V, Russell JL, et al. Chylothorax and pleural effusion in contemporary extracardiac fenestrated fontan completion. J Thorac Cardiovasc Surg. 2018;155(5):2069-2077. doi:10.1016/j.jtcvs.2017.11.046.
8. Kim G, Ko H, Byun JH, Lee HD, Kim H, Sung SC, et al. Risk Factors for Prolonged Pleural Effusion After Extracardiac Fontan Operation. Pediatr Cardiol. 2019;40(8):1545-1552. doi:10.1007/s00246-019-02183-3
9. Carrel T. Commentary: Vis a tergo-a push from behind-is of paramount importance for the optimal function of a bidirectional cavopulmonary shunt. J Thorac Cardiovasc Surg. 2020;160(6):1541-1542. doi:10.1016/j.jtcvs.2020.04.128.
10. Salik I, Mehta B, Ambati S. Bidirectional Glenn Procedure or Hemi-Fontan. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.
11. Wagh S, Deshmukh S, Ankolikar S. Conservative treatment of postoperative chylothorax: a case report. J Basic Clin Physiol Pharmacol. 2018;29(4):417-419. doi:10.1515/jbcpp-2017-0082.
12. Martucci N, Tracey M, Rocco G. Postoperative Chylothorax. Thorac Surg Clin. 2015;25(4):523-528. doi:10.1016/j.thorsurg.2015.07.014.
13. Bui A, Long CJ, Breitzka RL, Wolovits JS. Evaluating the Use of Octreotide for Acquired Chylothorax in Pediatric Critically Ill Patients Following Cardiac Surgery. J Pediatr Pharmacol Ther. 2019;24(5):406-415. doi:10.5863/1551-6776-24.5.406.
14. Kalomenidis I. Octreotide and chylothorax. Curr Opin Pulm Med. 2006;12(4):264-267. doi:10.1097/01.mcp.0000230629.73139.26.
15. Winder MM, Eckhauser AW, Delgado-Corcoran C, Smout RJ, Marietta J, Bailly DK. A protocol to decrease postoperative chylous effusion duration in children. Cardiol Young. 2018;28(6):816-825. doi:10.1017/S1047951118000392.
16. Koirala R, Panthee N, Pradhan S, Rajbhandari N, Shrestha DK, Chettri S, et al. In Hospital Outcomes after Bidirectional Cavopulmonary Anastomosis: 18 Year Experience from a Single Center. Nepalese Heart Journal. 2020;17(2):13–19. doi:10.3126/njh.v17i2.32673.
17. Samanidis G, Kourelis G, Bounta S, Kanakis M. Postoperative Chylothorax in Neonates and Infants after Congenital Heart Disease Surgery-Current Aspects in Diagnosis and Treatment. Nutrients. 2022;14(9):1803. doi:10.3390/nu14091803.
18. Shin YR, Lee H, Park YH, Park HK. Chylothorax after Surgery for Congenital Cardiac Disease: A Prevention and Management Protocol. Korean J Thorac Cardiovasc Surg. 2020;53(2):41-48. doi:10.5090/kjtcs.2020.53.2.41.
19. Zhang RG, Liu YM, Yao ZY, Fang JX, Li Y, Zheng ML, et al. Risk Factors of Chylothorax After Congenital Heart Surgery in Infants: A Single-Centre Retrospective Study. Ther Clin Risk Manag. 2024;20:161-168. doi:10.2147/TCRM.S436991.